Self-Scaling Variable Metric Algorithms Without Line Search for Unconstrained Minimization*
نویسندگان
چکیده
This paper introduces a new class of quasi-Newton algorithms for unconstrained minimization in which no line search is necessary and the inverse Hessian approximations are positive definite. These algorithms are based on a two-parameter family of rank two, updating formulae used earlier with line search in self-scaling variable metric algorithms. It is proved that, in a quadratic case, the new algorithms converge at least weak superlinearly. A special case of the above algorithms was implemented and tested numerically on several test functions. In this implementation, however, cubic interpolation was performed whenever the objective function was not satisfactorily decreased on the first "shot" (with unit step size), but this did not occur too often, except for very difficult functions. The numerical results indicate that the new algorithm is competitive and often superior to previous methods.
منابع مشابه
Self-Scaling Variable Metric Algorithms Without Line
This paper introduces a new class of quasi-Newton algorithms for unconstrained minimization in which no line search is necessary and the inverse Hessian approximations are positive definite. These algorithms are based on a two-parameter family of rank two, updating formulae used earlier with line search in self-scaling variable metric algorithms. It is proved that, in a quadratic case, the new ...
متن کاملOptimal conditioning of self-scaling variable Metric algorithms
Variable Metric Methods are "Newton-Raphson-like" algorithms for unconstrained minimization in which the inverse Hessian is replaced by an approximation, inferred from previous gradients and updated at each iteration, During the past decade various approaches have been used to derive general classes of such algorithms having the common properties of being Conjugate Directions methods and having...
متن کاملPerspectives on Self - Scaling Variable Metric Algorithms
Recent attempts to assess the performance of SSVM algorithms for unconstrained minimization problems differ in their evaluations from earlier assessments. Nevertheless, the new experiments confirm earlier observations that, on certain types of problems, the SSVM algorithms are far superior to other variable metric methods. This paper presents a critical review of these recent assessments and di...
متن کاملThe Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...
متن کاملComputational experience with improved variable metric methods for unconstrained minimization
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library The paper describes ...
متن کامل